Exercices : Jean-François Burnol Corrections : Volker Mayer Relecture : François Lescure

Divers

1 Un problème

Exercice 1

1. Prouver pour $n \in \mathbb{N}$, n > 1:

$$\int_0^\infty \frac{dx}{1+x^n} = \frac{\pi/n}{\sin(\pi/n)}$$

en utilisant le secteur angulaire $0 \le \operatorname{Arg} z \le \frac{2\pi}{n}$, $0 \le |z| \le R$, $R \to +\infty$, et en montrant que la contribution de l'arc de cercle tend vers zéro pour $R \to +\infty$.

2. Montrer, en utilisant les contours $\varepsilon \leqslant x \leqslant R$, $z = Re^{i\theta}$ $(0 \leqslant \theta \leqslant \frac{2\pi}{a})$, $z = re^{i\frac{2\pi}{a}}$ $(R \geqslant r \geqslant \varepsilon)$, $z = \varepsilon e^{i\theta}$ $(\frac{2\pi}{a} \geqslant \theta \geqslant 0)$:

$$a \in \mathbb{R}, \ a > 1 \implies \int_0^\infty \frac{dx}{1 + x^a} = \frac{\pi/a}{\sin(\pi/a)}.$$

Pour définir z^a comme fonction holomorphe sur $\{z = re^{i\alpha} \mid 0 < r < \infty, \ 0 \le \alpha \le \frac{2\pi}{a} \}$, on pose $z^a = r^a e^{ai\alpha} = \exp(a(\log r + i\alpha))$ (car $\log r + i\alpha = \operatorname{Log}(ze^{-i\frac{\pi}{a}}) + i\frac{\pi}{a}$; no comments).

3. Soit $J(a) = \int_0^\infty \frac{dx}{1+x^a}$; justifier que l'intégrale définissant J(a) est convergente et analytique comme fonction de a pour Re(a) > 1 et prouver $J(a) = \frac{\pi/a}{\sin(\pi/a)}$.

4. On définit maintenant

$$K(p) = \int_{-\infty}^{+\infty} \frac{e^{pt}}{1 + e^t} dt$$

pour 0 . Justifier les identités (pour <math>0):

$$K(p) = \int_{-\infty}^{+\infty} \frac{e^{pt}}{1 + e^t} dt = \int_0^{+\infty} \frac{t^{p-1}}{1 + t} dt = \frac{1}{p} \int_0^{+\infty} \frac{dt}{1 + t^{1/p}} = \frac{1}{p} J(\frac{1}{p}) = \frac{\pi}{\sin(\pi p)}$$

5. Expliquer pourquoi l'intégrale $K(p) = \int_{-\infty}^{+\infty} \frac{e^{pt}}{1+e^t} dt$ est convergente et analytique pour p complexe avec 0 < Re(p) < 1 et établir la formule $K(p) = \frac{e^{pt}}{\sin(\pi p)}$ pour 0 < Re(p) < 1.

6. Donner une preuve simple directe de la formule $K(p) = \frac{\pi}{\sin(\pi p)}$ pour tout p complexe avec 0 < Re(p) < 1 en appliquant le théorème des résidus avec des contours liés aux droites $z = x, x \in \mathbb{R}$ et $z = x + 2\pi i, x \in \mathbb{R}$.

7. Déduire de ce qui précède avec $p = \frac{1}{2} + i\xi$, $\xi \in \mathbb{R}$:

$$\int_{-\infty}^{+\infty} \frac{\cos(\xi t)}{\operatorname{ch}(t/2)} dt = \frac{2\pi}{\operatorname{ch}(\pi\xi)} ,$$

Montrer que la transformation de Fourier $\widehat{f}(\xi) = \int_{\mathbb{R}} e^{2\pi i \xi x} f(x) dx$ appliquée à la fonction $f(x) = \frac{1}{\operatorname{ch}(\pi x)}$ donne simplement $\widehat{f} = f$ (remarque: c'est aussi le cas avec $f(x) = e^{-\pi x^2}$).

1

8. On revient à la formule générale $K(p) = \frac{\pi}{\sin(\pi p)}$. En séparant parties réelles et imaginaires dans $\int_{-\infty}^{+\infty} \frac{e^{pt}}{1+e^t} dt$ déterminer (en simplifiant le plus possible) les valeurs de :

$$\int_{-\infty}^{+\infty} \frac{e^{ut} \cos(vt)}{1 + e^t} dt \qquad , \qquad \int_{-\infty}^{+\infty} \frac{e^{ut} \sin(vt)}{1 + e^t} dt \; ,$$

pour $0 < u < 1, v \in \mathbb{R}$.

Correction ▼ [002879]

2 Divers

Exercice 2

Déterminer $\int_{-\infty}^{+\infty} \frac{1}{(1+x^2)(2+e^{ix})} dx.$

Exercice 3

Déterminer $\int_{-\infty}^{\infty} e^{ix} \frac{x-i}{x+i} \frac{1}{x^2+1} dx$ et $\int_{-\infty}^{\infty} e^{-ix} \frac{x-i}{x+i} \frac{1}{x^2+1} dx$.

Exercice 4

Déterminer $\int_{-\infty}^{\infty} \frac{\sin(x)}{x(x^2+1)} dx$.

Exercice 5

Montrer que les racines du polynôme $P(z) = z^{111} + 3z^{50} + 1$ vérifiant |z| < 1 sont simples et qu'il y en a exactement 50. *Indication*: utiliser le théorème de Rouché en écrivant $P(z) = 3z^{50} + (z^{111} + 1)$ et calculer P' pour s'assurer que les racines avec |z| < 1 sont simples.

Correction ▼ [002883]

Exercice 6

Déterminer l'image par $z \mapsto \frac{3z+5}{z+2}$ du cercle unité, du cercle de rayon 2 centré en 1, du cercle de rayon 2 centré en l'origine; de la droite imaginaire, de la droite d'équation x = y, de la droite verticale passant en 3, de la droite verticale passant en -2.

Correction ▼ [002884]

Exercice 7

Question de cours: quels sont les automorphismes de D(0,1) avec 0 comme point fixe? [002885]

Exercice 8

Soit α avec $|\alpha| < 1$. On sait que $z \mapsto \phi_{\alpha}(z) = \frac{\alpha - z}{1 - \overline{\alpha}z}$ est un automorphisme du disque unité D(0,1). Trouver z_1 et z_2 avec $\phi_{\alpha}(z_1) = z_2$, $\phi_{\alpha}(z_2) = z_1$. Deux points distincts arbitraires z_1 et z_2 étant donnés dans D(0,1), montrer qu'il existe un automorphisme les échangeant et que cet automorphisme est unique à une rotation près (on se ramènera au cas où l'un des points est l'origine).

Correction ▼ [002886]

Exercice 9

Trouver l'unique automorphisme du premier quadrant qui échange 1+i et 2+2i. On remarquera que $z\mapsto z^2$ est une bijection analytique du premier quadrant sur le demi-plan supérieur, et que l'on peut donc ramener le problème à une question dans le demi-plan supérieur.

Exercice 10

Soit f holomorphe sur $\overline{D(0,1)}$. On suppose $|f(w)| \le 8$ pour tout $|w| \le 1$ et $f(\frac{3}{4}) = 0$. Montrer $|f(0)| \le 6$. Indication: trouver un automorphisme ϕ du disque avec $\phi(0) = \frac{3}{4}$ et utiliser le Lemme de Schwarz pour la fonction $\frac{1}{8}f(\phi(z))$. Trouver le z avec $\phi(z) = 0$.

1. Soit $C_R = \{Re^{i\theta}; 0 \le \theta \le \frac{2\pi}{n}\}$. La fonction

$$f(z) = \frac{1}{1 + z^n}$$

a un seul pôle $z_0 = e^{i\pi/n}$ dans le secteur. C'est un pôle simple et le résidu est

Res
$$\left(f, e^{i\frac{\pi}{n}}\right) = \frac{1}{nz_0^{n-1}} = -\frac{z_0}{n} = -\frac{1}{n}e^{i\frac{\pi}{n}}.$$

D'où

$$-\frac{2i\pi}{n}e^{i\pi/n} = \int_0^R \frac{dx}{1+x^n} + \int_{C_R} \frac{dz}{1+z^n} + \int_{Re^{i\pi/n}}^0 \frac{dz}{1+z^n}$$

pour tout R > 1. Puisque n > 1, on a

$$\lim_{R\to\infty}\left|\int_{C_R}\frac{dz}{1+z^n}\right|\leqslant \lim_{R\to\infty}\left(\frac{1}{R^n-1}\int_{C_R}|dz|\right)=0.$$

D'autre part,

$$\int_{Re^{2i\pi/n}}^{0} \frac{dz}{1+z^n} = -\int_{0}^{R} \frac{1}{1+x^n} e^{2i\pi/n} dx = -e^{2i\pi/n} \int_{0}^{R} \frac{dx}{1+x^n}.$$

Il en résulte que

$$\int_{0}^{R} \frac{dx}{1+x^{n}} = \frac{-\frac{2i\pi}{n}e^{i\pi/n} - \int_{C_{R}} \frac{dz}{1+z^{n}}}{1 - e^{2i\pi/n}} \longrightarrow \frac{-\frac{2i\pi}{n}e^{i\pi/n}}{1 - e^{2i\pi/n}} = \frac{2i\pi}{n} \frac{1}{2i\sin\left(\frac{\pi}{n}\right)} = \frac{\frac{\pi}{n}}{\sin\left(\frac{\pi}{n}\right)}$$

lorsque $R \to \infty$.

2. La fonction $z^a = \exp\left(a(\log r + i\alpha)\right)$ n'est pas définie au voisinage de l'origine. C'est la raison pourquoi on est amené de considérer le petit morceau de cercle $\gamma_{\mathcal{E}} = \{\varepsilon e^{i\theta}\,;\, \frac{2\pi}{a} \geqslant \theta \geqslant 0\}$. On va de nouveau noter $C_R = \{Re^{i\theta}\,;\, 0 \leqslant \theta \leqslant \frac{2\pi}{n}\}$ et

$$\Omega = \left\{ z = re^{i\alpha} ; \ 0 < r < \infty \ , \ 0 \leqslant \alpha \leqslant \frac{2\pi}{a} \right\}.$$

Pour $z = re^{i\alpha} \in \Omega$ on a

$$z^{a} = -1$$

$$\iff a(\log r + i\alpha) = i\pi \pmod{2i\pi}$$

$$\iff r = 1 \text{ et } \alpha = \frac{\pi}{a}.$$

Par conséquent, $f(z) = \frac{1}{1+z^a}$ a une seule singularité $z_0 = e^{i\frac{\pi}{a}}$ dans Ω . Comme $f(z) = \frac{1}{h(z)}$ avec $h(z_0) = 1 + z_0^a = 0$ et

$$h'(z_0) = (\exp(a\log z))'_{|z=z_0} = \frac{a}{z_0}z_0^a \neq 0$$

le point z_0 est un pôle simple et on a

$$\operatorname{Res}(f, z_0) = \frac{1}{h'(z_0)} = -\frac{z_0}{a} = -\frac{1}{a}e^{i\frac{\pi}{a}}.$$

Il suffit alors de procéder comme dans la question 1. pour établir

$$\int_0^\infty \frac{dx}{1+x^a} = \frac{\frac{\pi}{a}}{\sin\left(\frac{\pi}{a}\right)} \quad \text{pour} \quad a > 1.$$

3. Soit $x \in (0, \infty)$ et a = u + iv avec u > 1. Alors

$$|x^{a}| = |x^{iv}||x^{u}| = |\exp(i(v\log x))|x^{u}| = x^{u}.$$

Par conséquent on a, pour tout x > 1,

$$\left|\frac{1}{1+x^a}\right| \leqslant \frac{1}{x^u - 1}$$

ce qui implique la convergence de l'intégrale J(a). Montrons que l'application $a\mapsto J(a)$ est holomorphe dans $\Omega=\{\operatorname{Re} a>1\}$. Pour ce faire on utilise des critères d'holomorphie des intégrales avec paramètres (voir le chapitre 14 du polycopié 2005/2006 de J.-F. Burnol). Considérons d'abord $J_1(a)=\int_0^2\frac{dx}{1+x^a}$. On a (1) $(a,x)\mapsto g(a,x)=\frac{1}{1+x^a}$ est continue. (2) $\forall x\in[0,2]\colon a\mapsto g(a,x)$ est holomorphe dans Ω . Par un critère d'holomorphie des intégrales avec paramètres (théorème 26 du chapitre 14 du polycopié 2005/2006 de J.-F. Burnol) $a\mapsto J_1(a)$ est holomorphe dans Ω . Pour $J_2(a)=\int_2^\infty\frac{dx}{1+x^a}$ il faut en plus de (1) et (2) majorer $g(a,x)=\frac{1}{1+x^a}$ par une fonction intégrable k (dépendant que de la variable x). Pour ce faire il faut travailler dans un domaine plus petit

$$\Omega_T = \{ \operatorname{Re} a > T \} \subset \Omega \quad , \quad T > 1 \, .$$

Dans ce cas

$$|g(a,x)| = \left| \frac{1}{1+x^a} \right| \leqslant \frac{1}{x^T-1} \quad \forall x \geqslant 2 \text{ et } a \in \Omega_T.$$

Comme T > 1, $k(x) = \frac{1}{x^T - 1}$ est intégrable: $\int_2^\infty k(x) \, dx < \infty$. Par un critère d'holomorphie des intégrales avec paramètres (ici le théorème 27 du chapitre 14 du polycopié 2005/2006 de J.-F. Burnol), $a \in \Omega_T \mapsto J_2(a)$ est holomorphe. Ceci étant vrai pour tout T > 1, J_2 est holomorphe dans Ω . En conclusion,

$$a \mapsto J(a) = J_1(a) + J_2(a)$$

est holomorphe sur Ω . L'affirmation $J(a) = \frac{\frac{\pi}{a}}{\sin(\frac{\pi}{a})}$, $a \in \Omega$, est une conséquence du principe des zéros isolés et du fait que nous avons déja établi cette relation pour tout réel a > 1.

- 4. Évident.
- 5. On peut procéder comme dans la question 3. Notons que

$$|h(p,t)| = \left| \frac{e^{pt}}{1+e^t} \right| = \frac{e^{\operatorname{Re}(p)t}}{1+e^t}.$$

Par conséquent, $|h(p,t)| \sim e^{(\text{Re}(p)-1)t}$ pour $t \to \infty$ et $|h(p,t)| \sim e^{\text{Re}(p)t}$ pour $t \to -\infty$. L'intégrale K(p) est donc convergente. Pour établir l'holomorphie de cette fonction il faut travailler u©ì

$$U_{\varepsilon} = \{0 < \text{Re}(p) < 1 - \varepsilon\}$$
 avec $\varepsilon > 0$ petit.

6. Nous avons vu dans la question précédente que la fonction $h(p,t) = \frac{e^{pt}}{1+e^t}$ décroit exponentiellement pour 0 < Re(p) < 1 lorsque $t \to \pm \infty$. On en déduit "facilement" (faire les détails!) que

$$\lim_{R \to \infty} \int_{R}^{R+2i\pi} \frac{e^{pz}}{1+e^{z}} dz = \lim_{R \to \infty} \int_{-R+2i\pi}^{-R} \frac{e^{pz}}{1+e^{z}} dz = 0$$

Par le théorème des résidus il en résulte que :

$$2i\pi \operatorname{Res}\left(\frac{e^{pz}}{1+e^z}, i\pi\right) = \lim_{R \to \infty} \left[\int_{-R}^{R} \frac{e^{pt}}{1+e^t} dt + \int_{R+2i\pi}^{-R+2i\pi} \frac{e^{pz}}{1+e^z} dz \right].$$

Or $\int_{R+2i\pi}^{-R+2i\pi} \frac{e^{pz}}{1+e^z} dz = -e^{2i\pi p} \int_{-R}^{R} \frac{e^{pt}}{1+e^t} dt$. D'où:

$$2i\pi \left(-e^{i\pi p}\right) = 2i\pi \operatorname{Res}\left(\frac{e^{pz}}{1+e^z}, i\pi\right) = \left(1 - e^{2i\pi p}\right) K(p).$$

Finalement on a

$$K(p) = \pi \frac{2i}{e^{i\pi p} - e^{-i\pi p}} = \frac{\pi}{\sin(\pi p)}.$$

Correction de l'exercice 5

$$|Q(z)| = |z^{50}(z^{61} + 3)| = |z^{61} + 3| \ge 2 \text{ pour } |z| = 1. \text{ D'où}$$

$$|P(z) - Q(z)| = 1 < |Q(z)|$$
 dans $\{|z| = 1\}$.

Par le théorème de Rouché, P,Q ont le même nombre de zéros dans D(0,1). Le reste en découle en observant que P'=Q' et $P(0)\neq 0$.

Correction de l'exercice 6 ▲

L'application $\Phi(z) = \frac{3z+5}{z+2}$ est une homographie. L'image d'un cercle est alors de nouveau un cercle ou une droite. De plus on remarque que (1) $\Phi(x) \in \mathbb{R}$ pour tout réel $x \neq -2$. (2) $\Phi(\overline{z}) = \overline{\Phi(z)}$ pour tout $z \in \mathbb{C} \setminus \{-2\}$. Comme $\Phi(-1) = 2$ et $\Phi(1) = \frac{8}{3}$, l'image du cercle unité est un cercle symétrique par rapport à l'axe réel (cf. (2)) avec centre $\left(\frac{8}{3}+2\right)\frac{1}{2}=\frac{7}{3}$ et de rayon $\frac{8}{3}-\frac{7}{3}=\frac{1}{3}$. Le cercle de rayon 2 centré à l'origine contient -2. C'est l'unique point dont l'image est $\Phi(-2) = \infty$. L'image de ce cercle est alors une droite et c'est

$$\Phi(2) + i\mathbb{R} = \frac{11}{4} + i\mathbb{R}.$$

Correction de l'exercice 8 A

On a $\Phi_{\alpha}(0) = \alpha$ et $\Phi_{\alpha}(\alpha) = 0$. Remarquons que $\Phi_{\alpha} \circ \Phi_{\alpha}$ fixe l'origine. Par l'exercice 7, l'automorphisme $\Phi_{\alpha} \circ \Phi_{\alpha}$ de D(0,1) est une rotation $z \mapsto e^{i\alpha}z$. Un calcul explicite montre que $\Phi_{\alpha} \circ \Phi_{\alpha} = \mathrm{Id}$, c'est à dire $\Phi_{\alpha}^{-1} = \Phi_{\alpha}$. Soit Ψ un automorphisme du disque unité D(0,1) tel que $\Psi(z_1) = z_2$. Alors

$$\Psi \circ \Phi_{z_1}(0) = \Phi_{z_2}(0) \iff \Phi_{z_2}^{-1} \circ \Psi \circ \Phi_{z_1}(0) = 0$$

et donc $A = \Phi_{z_2}^{-1} \circ \Psi \circ \Phi_{z_1}$ est un automorphisme du disque unité fixant l'origine. On en déduit de nouveau que A est une rotation: $A(z) = e^{i\alpha}z$. Par conséquent,

$$\Psi = \Phi_{z_2} \circ A \circ \Phi_{z_1}^{-1}. \tag{1}$$

On vient de déterminer la forme générale d'un automorphisme Ψ du disque unité vérifiant $\Psi(z_1) = z_2$. Remarquons qu'il est unique "à une rotation près"; Ψ est déterminé par (1) où A est une rotation quelconque.